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Ion steric effects on electrophoresis
of a colloidal particle
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We calculate the electrophoretic mobility Me of a spherical colloidal particle, using
modified Poisson–Nernst–Planck (PNP) equations that account for steric repulsion
between finite sized ions, through Bikerman’s mean-field model (Bikerman, Phil.
Mag., vol. 33, 1942, p. 384). Ion steric effects are controlled by the bulk volume
fraction of ions ν, and for ν = 0 the standard PNP equations are recovered. An
asymptotic analysis in the thin-double-layer limit reveals at small zeta potentials
(ζ < kBT /e ≈ 25 mV) Me to increase linearly with ζ for all ν, as expected from the
Helmholtz–Smoluchowski (HS) formula. For larger ζ , however, it is well known
that surface conduction of ions within the double layer reduces Me below the
HS result. Crucially, however, in the PNP equations surface conduction becomes
significant precisely because of the aphysically large and unbounded counter-ion
densities predicted at large ζ . In contrast, ion steric effects impose a limit on the
counter-ion density, thereby mitigating surface conduction. Hence, Me does not fall
as far below HS for finite sized ions (ν �= 0). Indeed, at sufficiently large ν, ion
steric effects are so dramatic that a maximum in Me is not observed for physically
reasonable values of ζ (� 10kBT /e), in stark contrast to the PNP-based calculations of
O’Brien & White (J. Chem. Soc. Faraday Trans. II, vol. 74, 1978, p. 1607) and O’Brien
(J. Colloid Interface Sci., vol. 92, 1983, p. 204). Finally, by calculating a Dukhin–
Bikerman number characterizing the relative importance of surface conduction, we
collapse Me versus ζ data for different ν onto a single master curve.

Key words: colloidal systems, low-Reynolds-number flows, micro-/nano-fluid
dynamics

1. Introduction
In 1809, exactly two centuries ago, Ferdinand Friedrich Reuss published his

pioneering experiments on the movement of electrically charged clay particles
immersed in viscous electrolytes, under an imposed electric field (Reuss 1809).
Today, this phenomenon is known as electrophoresis, and it plays a crucial role in
microfluidics (Squires & Quake 2005), colloidal science (Russel, Saville & Schowalter
1989) and separation of biomolecules such as DNA (Viovy 2000). The relationship
between the imposed field and the particle velocity is of fundamental importance.
A uniformly charged spherical colloid in a uniform field E translates with velocity
U = Me E, where Me is called the electrophoretic mobility. Over the last century, the
calculation of Me has been a central focus in colloid science (Lyklema 1995). In this
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regard, the size of the ionic screening cloud surrounding the particle, characterized
by the Debye length κ−1, relative to the particle radius R is of particular relevance.
Together, the screening cloud and charged particle comprise the electrical double layer,
and in the ‘thick’ double-layer limit, κR → 0, Huckel (1924) found Me = (2/3)εζ/η.
Here, ε and η are the dielectric permittivity and viscosity of the fluid, respectively,
and ζ is the electrical ‘zeta’ potential at the particle surface. In the opposite, and more
frequently encountered, ‘thin’ double-layer limit, κR → ∞, Me follows the Helmholtz–
Smoluchowski (HS) formula, Me = εζ/η (Smoluchowski 1903).

In a tour de force analysis, O’Brien & White (1978) computed Me over a wide range
of κR and ζ . In particular, for thin double layers and ζ < kBT /e their results agree with
the HS formula. Here, kBT /e ≈ 25 mV is the thermal voltage, where kB is Boltzmann’s
constant, T is temperature and e is the fundamental charge. For larger ζ , however,
O’Brien and White (1978) found Me to drop below HS, to attain a maximum value,
and to finally decrease with increasing ζ . These results were confirmed by O’Brien
(1983) who, building on the work of Dukhin & Deryaguin (1974), conducted an
asymptotic thin-double-layer analysis. O’Brien (1983) also showed that Me reaches a
finite value as ζ → ∞, for example, for a binary z−z electrolyte μ → ln 4(kBT /ze)εη.
The discrepancy between the HS result and O’Brien & White (1978) and O’Brien
(1983) occurs due to surface transport, or conduction, of ions within the thin screening
cloud, which is neglected in the HS analysis but becomes significant at sufficiently
large ζ , due to the large ion concentration within the screening cloud (Dukhin &
Deryaguin 1974). A description of the mechanisms by which surface conduction
reduces Me below the HS result can be found in Lyklema (1995) and Khair & Squires
(2009).

The vast majority of theoretical work on colloidal electrokinetics, including
O’Brien & White (1978) and O’Brien (1983), utilizes the Poisson–Nernst–Planck
(PNP) equations, wherein ions are assumed to be point-sized and non-interacting.
At equilibrium, the PNP equations reduce to the celebrated Poisson–Boltzmann (PB)
equation, whose solution gives the Gouy–Chapman (GC) model of the double layer.
The shortcomings of GC are well known: it predicts impossibly large (counter)-ion
concentrations near highly charged surfaces, giving a double-layer capacitance that
grows exponentially with zeta potential. Recognizing this fault, Bikerman (1942)
derived a modified PB equation (2.6) – which we shall call the Poisson–Bikerman
(PBik) equation – accounting for steric effects associated with the finite size of
ions and solvent molecules. (Note, by ‘steric effects’ we refer to repulsion between
finite sized ions, as opposed to interactions between colloidal particles arising from
polymer adsorbates, to which the term is more commonly applied.) Subsequently,
Freise (1952) calculated the double-layer capacitance from the PBik equation, which
decreases at large zeta potentials, as ζ −1/2. Furthermore, the PBik equation does not
predict aphysically large ion densities adjacent to highly charged surfaces; instead,
at a certain ‘critical’ zeta potential a maximum density is reached. Following Bazant
et al. (2009), we refer to the PBik double-layer structure as the Bikerman–Freise (BF)
model. Variants of the PBik equation have since been rediscovered independently by
several groups; we direct the reader to Bazant et al. (2009) for a complete history.
The PBik equation has been solved around a uniformly charged flat plate (Kilic,
Bazant & Ajdari 2007a), a circular cylinder (Wiegel, Strating & Garcia 1993; Bohinc
et al. 2002) and a sphere (Strating & Wiegel 1993; Lopez-Garcia, Aranda-Rascon &
Horno 2007). Kilic, Bazant & Ajdari (2007b) extended the theory of Borukhov,
Andelman & Orland (1997) to derive modified PNP (MPNP) equations, that reduce
to the PBik equation at equilibrium, which they applied to study the dynamical
charging of an electrochemical cell. Storey et al. (2008) demonstrated that the MPNP
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equations can predict flow reversal in ac-electro-osmosis at high frequencies, as has
been been observed experimentally.

Recall that the maximum in the mobility calculated by O’Brien & White (1978)
and O’Brien (1983) occurs for ζ ∼ O(kBT /e), and reflects the rising influence of
surface conduction of ions within the double layer. This relative importance, however,
results from the aphysically large and unbounded ion densities predicted by the PNP
equations. It is thus natural to ask whether the mobility maximum calculated by
O’Brien & White (1978) and O’Brien (1983) is a direct result of these aphysical
predictions. Given that ion steric effects prohibit this unbounded growth in ion
density, can ion sterics mitigate surface conduction so much as to prevent the mobility
maximum? This issue forms our central focus: indeed, we show that ion steric effects
can change the qualitative behaviour of the mobility, such that a maximum may
not be observed for physically reasonable ζ . Lopez-Garcia, Aranda-Rascon & Horno
(2008) have considered ion steric effects on electrophoresis by solving the MPNP
equations numerically for a range of κR and ζ . We, on the other hand, provide a
simpler and physically based analysis of ion steric effects in the thin-double-layer
limit κR � 1 – precisely the regime in which they have the greatest impact.

Before continuing, we emphasize that Bikerman’s model is but one of several
approaches to account for finite ion size steric effects in electrical double layers. The
earliest, and perhaps most popular, is the Stern layer: a molecularly thin region at
the particle surface acting as a linear capacitor in ‘series’ with the diffuse double
layer (Lyklema 1995, see also § 5). The Stern layer capacitance can be adjusted to
prevent the diffuse zeta potential from becoming large enough for the PB equation
to yield aphysical ion concentrations. Nevertheless, the Stern layer does not directly
deal with ion sterics in the diffuse part of the double layer. Detailed models for
ion-ion interactions (both steric and electrostatic) have been developed using non-
equilibrium statistical mechanics, density functional theory and liquid state theory
(see Kilic et al. 2007a for a discussion and references); however, they are technically
quite involved and not amenable to simple or intuitive analysis. Here, we employ
Bikerman’s model, which is a mean-field approach (like PB) that accounts for ion
steric effects in perhaps the most conceptually and mathematically straightforward
manner. Furthermore, as Bikerman’s model has garnered renewed interest in recent
years (e.g. Paunov et al. 1996; Borukhov et al. 1997; Kilic et al. 2007a; Kornyshev
2007; Storey et al. 2008), our motivation here is to explore its consequences for the
most well known of electrokinetic phenomena: electrophoresis.

In § 2 we provide an introduction to ion steric effects. In § 3 we present a thin-
double-layer analysis to calculate Me. Results are discussed in § 4. Finally, in § 5 we
offer concluding remarks.

2. Ion steric effects: the basic picture
Consider a uniformly charged flat plate in contact with a binary z−z electrolyte

(figure 1). At equilibrium, the electrochemical potential μ± of an ion is spatially
constant, ∇μ± ≡ 0 (Russel et al. 1989). (Here, ± denotes the sign of the charge.)
In the classic dilute-solution theory of electrolytes, wherein ions are treated as non-
interacting point charges, μ± are given by (Lyklema 1995)

μ± = ±zeφ − kBT ln n±, (2.1)

where φ is the electric potential, and n± are the ion number densities. The first and
second terms in (2.1) are the electrostatic and osmotic contributions, respectively, to
the electrochemical potential. At equilibrium (∇μ± ≡ 0), the ion densities follow the



346 A. S. Khair and T. M. Squires

n_ n+

_
_

_

_

+
_

_

_ _ _ _ _ _ _ _ _ _ _

_

_ _

+
_

_ _ _

+

_

+

ζ < φc ζ > φc

lc ~ ζ1/2

κ–1

κ–1
_ _ _ _ _
_ _ _ _ _

κy κy

0

0.25

0.50

0.75ζ

ζ

10

8

6

4

2

1
0 5 10 15 0 5 10 15

1.00

y

Bulk

Diffuse layer

(a)

(c) (d)

(b)

Diffuse layer

Bulk

Condensed layer

Figure 1. Physical picture of Bikerman’s model of ion steric effects. (a) ζ <φc =
(kBT /ze) ln(2/ν); hence, the surface charge is screened solely by a diffuse layer of counter-ions.
(b) Conversely, for ζ > φc a condensed counter-ion layer of density n− = 2/ν and width
lc ∼ ζ 1/2 forms adjacent to the plate. (c) and (d ) The counter-ion n− and co-ion n+

density profiles, respectively, above a positively-charged plate, from numerical solution of
the PBik equation (2.6). Here, ν = 0.2, and arrows indicate increasing ζ : solid lines are for
zeζ/kBT = 0.1, 1, 5, 25, 50 and 100. At sufficiently large ζ , a condensed layer grows into the
bulk electrolyte.

Boltzmann distribution

n± = n∞e∓zeφ/kBT , (2.2)

where n∞ is the ion concentration far from the plate. Note, (2.2) predicts an
unbounded, and aphysical, growth in counter-ion concentration with increasing
electric potential φ.

To complete the description of the double layer, Poisson’s equation, ε∇2φ = − ρ,
relates the electric potential to the charge density in the fluid, ρ = ze(n+ − n−).
Substituting (2.2) into Poisson’s equation yields the PB equation (Russel et al. 1989)

ε∇2φ = 2zen∞ sinh(zeφ/kBT ), (2.3)

which is solved by specifying the ‘zeta’ potential or surface charge density on the
plate. Importantly, from (2.3) there emerges a length scale – the Debye screening

length, κ−1 =
√

εkBT /2n∞(ze)2 – characterizing the distance over which the charge
density in the fluid decays. For monovalent ions at millimolar concentration and
room temperature, the Debye length is approximately 10 nm.

One does not have to solve (2.3) to reveal its shortcomings. Following Kilic et al.
(2007a), we ascribe to each ion a size a, such that the maximum allowable number
density of ions equals 1/a3. From (2.2), the ‘critical’ potential φc at which this density
is reached is φc =(kBT /ze) ln(2/ν), where ν = 2a3n∞ is the bulk volume fraction of
ions. The logarithmic dependence of φc on ν implies that the maximum density
can be attained at potentials of the order of the thermal voltage kBT /ze, even for
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relatively dilute solutions, that is, the PB equation can predict aphysical densities for
φ � kBT /ze.

Bikerman (1942) proposed a simple model to account for the finite size of ions and
solvent molecules. As shown by Kilic et al. (2007b), Bikerman’s model is equivalent
to modifying the electrochemical potentials to read

μ± = ±zeφ − kBT ln n± − kBT ln(1 − n+a3 − n−a3), (2.4)

where the last term encapsulates steric effects due to finite sized ions. Borukhov,
Andelman & Orland (2000) derived (2.4) from statistical mechanical arguments, by
assuming that ions and solvent molecules occupy sites on a square lattice of unit cell
size a. Remarkably, the equilibrium conditions ∇μ± = 0 can be solved analytically to
give an explicit relation between the electric potential and ion densities:

n± =
n∞e∓zeφ/kBT

1 + 2ν sinh2(zeφ/2kBT )
. (2.5)

Hence, at large potentials the counter-ion density saturates at 2n∞/ν = 1/a3.
Combining (2.5) with Poisson’s equation yields the PBik equation:

ε∇2φ = 2zen∞
sinh(zeφ/kBT )

1 + 2ν sinh2(zeφ/2kBT )
. (2.6)

In figures 1(c) and 1(d ) we plot the counter- and co-ion densities, respectively, above a
charged plate for several zeta potentials ζ and bulk volume fraction ν = 0.2, from the
numerical solution of (2.6). In this case, φc ≈ 2.3kBT /ze and for zeζ/kBT = 25, 50 and
100, a condensed counter-ion layer with density n− =2/ν = 10 (and n+ = 0) is evident.
Moreover, the size of the condensed layer lc grows with ζ , which can be understood
as follows. First, the surface charge density on the plate q balances the charge in the
condensed layer, q ∼ zelc/a

3. Second, from Gauss’ law q = ε(∂φ/∂y) ∼ εζ/lc. Hence,
lc ∼ κ−1

√
νzeζ/kBT – the condensed layer grows like ζ 1/2, in agreement with Kilic

et al. (2007a).

3. The electrophoretic mobility
We now consider a uniformly charged spherical particle of radius R freely

suspended in a binary symmetric electrolyte. An imposed electric field E gives
rise to electrophoresis of the particle, which translates at a velocity U = Me E. The
electrolyte is described to first order in E by coupled linear partial differential
equations governing the perturbations to the equilibrium electrochemical potentials
δμ± and the fluid velocity u. As derived by O’Brien & White (1978), the perturbed
electrochemical potentials satisfy

∇2δμ± + ∇ ln n0
± · ∇δμ± = 1

2
mu·∇ ln n0

±. (3.1)

In the above, and henceforth, we employ dimensionless variables: distances are scaled
by R, electrochemical potentials by kBT ; ion number densities by n∞; and velocity
by ε(kBT /ze)2/ηa. In (3.1), n0

± are the equilibrium ion densities given by the PBik

equation, and m =2ε(kBT /ze)2/ηD, where the ion diffusivity D is assumed to be equal
for all ions.

The velocity field is incompressible, ∇ · u = 0, and satisfies the inhomogeneous
Stokes equations

∇2(∇ × u) = 1
2
(κR)2(∇n0

+ × ∇δμ+ + ∇n0
− × ∇δμ−), (3.2)
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where the body force on the fluid arises from gradients in electrochemical potentials.
O’Brien & White (1978) and O’Brien (1983) have presented equations almost identical
to (3.1) and (3.2) for general electrolytes. Although their focus was on the PNP
equations, we note that (3.1) and (3.2) are in fact valid for any mean-field model of
electrolyte dynamics.

In a reference frame translating with the particle, we require ∇δμ± → ∓Ê and

u → −Me Ê at large distances (r → ∞), where the mobility is scaled by εkBT /zeη,
Ê = E/|E|, and r is the scaled distance from the particle centre. On the surface of
the particle (r = 1) there is zero normal flux of ions n·∇δμ± =0, and the fluid velocity
obeys the no-slip condition u = 0, where n is the unit normal into the fluid.

We now invoke the thin-double-layer limit κR � 1, for which the majority of
the electrolyte is uncharged, except for a thin and locally planar counterion-rich
layer adjacent to the particle surface. Our analysis of the non-equilibrium double-
layer structure follows very closely that of O’Brien (1983); for brevity, we do not
present details here. However, a central outcome is that the perturbed electrochemical
potentials are constant across the thin diffuse layer, (∂/∂y)δμ± = 0, where y = κa(r−1)
is a local coordinate perpendicular to the particle surface. As noted by Dukhin &
Deryaguin (1974) and O’Brien (1983), this implies that the double layer attains a
quasi-equilibrium structure. Rescaling (3.2) with y reveals that the dominant fluid
flow in the double layer is parallel to the surface, with a velocity field given by

u‖ = −1

2
∇sδμ+

∫ y

0

∫ ∞

t

(n0
+ − 1) ds dt − 1

2
∇sδμ−

∫ y

0

∫ ∞

t

(n0
− − 1) ds dt, (3.3)

where ∇s = (I − nn) · ∇ is the surface gradient operator. From (3.3), the ‘slip’ velocity
us

‖ at the outer edge of the double layer (y → ∞) is

us
‖ = −1

2
∇sδμ+

∫ ∞

0

y(n0
+ − 1) dy − 1

2
∇sδμ−

∫ ∞

0

y(n0
− − 1) dy, (3.4)

and the mobility of the sphere is calculated from us
‖ via the formula (Anderson 1989)

Me Ê = − 1

4π

∮
r=1

us
‖ dS. (3.5)

To explicitly compute Me one requires the surface derivatives of the electrochemical
potentials, ∇sδμ±, at the double-layer-bulk interface, r = 1. To this end, in the bulk
electrolyte the equilibrium ion densities are equal to the uniform bulk concentration,
n0

± = 1, and hence (3.1) reduces to ∇2δμ± =0. Thus, by symmetry and linearity, δμ±
are given by

δμ± =

(
∓r +

C±

r2

)
Ê · r̂, (3.6)

from which ∇sδμ± can readily be calculated. Using (3.6) and (3.4) with (3.5) gives

Me =
1

3
(C+ − 1)

∫ ∞

0

y(n0
+ − 1) dy +

1

3
(C− + 1)

∫ ∞

0

y(n0
− − 1) dy. (3.7)

Finally, one must determine the dipole coefficients C±. To accomplish this, we utilize
the known quasi-equilibrium double-layer structure to construct effective boundary
conditions on the bulk electrochemical potentials (3.6), which are to be applied at the
double-layer-bulk interface, r =1. Again, our approach is almost identical to O’Brien
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Figure 2. Mobility Me as a function of zeta potential ζ for various volume fractions ν and
κR = 50. At sufficiently low ζ ( < 1) all the data follow the HS result Me = ζ (solid line). At
larger ζ surface conduction causes the mobility to fall below the HS result.

(1983), hence we do not present details here. The effective boundary conditions are

∂δμ+

∂r
= f+∇2

s δμ+ + g+∇2
s δμ−, and

∂δμ−

∂r
= g−∇2

s δμ+ + f−∇2
s δμ−, at r = 1.

(3.8)
These conditions express ion conservation, balancing the flux of ions across the double-
layer-bulk interface (left-hand side of (3.8)) with the variation in the (integrated)
tangential ionic flux along the particle surface. The surface flux coefficients are

f± = − 1

κR

∫ ∞

0

(n0
± − 1) dy − m

4κa

∫ ∞

0

(n0
± − 1)I± dy,

g± = − m

4κR

∫ ∞

0

(n0
± − 1)I∓ dy,

⎫⎪⎪⎬
⎪⎪⎭

(3.9)

where

I±(y) = y

∫ ∞

y

(n0
± − 1) ds +

∫ y

0

s(n0
± − 1) ds. (3.10)

Finally, substituting (3.6) in (3.8) yields

C± =

(f∓ − 1)

(
±1

2
∓ g+ ± f±

)
− g±

(
∓1

2
± g+ ∓ f∓

)

(f+ − 1)(f− − 1) − g−g+

. (3.11)

Using (3.11) with (3.7) completes the calculation for the mobility.

4. Results
In figure 2 we plot the mobility Me against zeta potential ζ for κR = 50 and six

different bulk volume fractions, ranging from an infinitely dilute solution (ν = 0) to a
highly concentrated one (ν = 0.5). The range 0<ζ � 10 is chosen to match the figures
in O’Brien & White (1978), and our results for ν =0 are in quantitative agreement
with theirs.

Evidently, ion steric effects make little difference for ζ < 1: Me follows the HS
formula Me = ζ for all ν. For ζ < 1 there is only a small excess of ions within
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the double layer, and hence neither surface conduction nor ion steric effects are
important. Thus, (3.8) reduce to ∂μ±/∂r = 0, giving from (3.6) C± = ∓ 1/2 – the
electrochemical potentials δμ± adopt the profile of an insulator, since there is almost
no ion transport across the double-layer-bulk interface. Furthermore, n0

± follow the

linearized Debye–Hückel profiles, n0
± = 1 ∓ ζe−y; therefore, from (3.7) we find Me = ζ .

At larger zeta, however, surface conduction becomes increasingly important and
Me falls below the HS formula. The greatest departure from HS is in the absence of
ion sterics, ν = 0, and Me increases with ν for a given ζ . This is readily understood:
surface conduction diminishes with increasing ν, due to the reduced maximum ion
density 2/ν in the condensed layer. Thus, surface conduction primarily determines
Me, rather than ζ itself. And since ion steric effects reduce surface conduction, one
should plot Me versus an appropriate measure of surface conduction: namely, the
Dukhin–Bikerman number Du = σs/σbR, which signifies the relative importance of
surface (double layer) σs to bulk σb conductivities. To calculate Du , note that the
electrical current j in response to Ê is j = (n0

+ + n0
−)Ê + m

2
(n0

+ − n0
−)u, where the first

and second terms correspond to the electromigrative and electroconvective current
arising from the imposed field and ensuing electro-osmotic flow u, respectively. In the
bulk electrolyte n0

± = 1; hence, j b =2Ê, giving σb =2. The surface current j s = σs Ê is
simply the ‘excess’ current j − j b integrated over the double layer. Thus, substituting
the velocity field u‖ (3.3) into the definition of j yields σs , from which Du readily
follows as

Du =
1

2κR

∫ ∞

0

(n0
+ + n0

− − 2) dy +
m

8κR

∫ ∞

0

(n0
+ − n0

−)(I+ − I−) dy. (4.1)

The first and second terms in (4.1) represent the electromigrative (Duem) and
electroconvective (Duec) contributions to Du , respectively. For ν = 0 we have (Lyklema
1995)

Duν=0 =
4(1 + m)

κR
sinh2

(
zeζ

2kBT

)
. (4.2)

Thus, Duem and Duec differ only by a factor of m. Moreover, they scale as ζ 2 at small
ζ , while growing exponentially with ζ at large ζ , reflecting the unbounded counter-ion
density in the double layer. For finite ion size ν �= 0, Du must be evaluated numerically
(figure 3a). At small ζ , Du ∼ ζ 2 – the counter-ion density is small and hence ion steric
effects are unimportant. However, Du grows algebraically rather than exponentially
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extended range ζ < 2500. (b) The same Me data scaled by ζ and plotted versus the Dukhin–
Bikerman number Du (inset shows log–log plot at large Du).

at large ζ , showing the dramatic reduction in surface conduction due to ion sterics.
Separate plots of Duem and Duec appear in figure 3(b) for ν =0.1. Again, at small ζ

both Duem and Duec scale as ζ 2; however, at large ζ , Duec ∼ ζ 1/2 while Duec ∼ ζ 3/2.
Note, Duem is simply proportional to the excess ion concentration in the double layer,
which scales as the condensed-layer width lc ∼

√
νζ for ζ � 1 (Kilic et al. 2007a). The

electroconvective flux, however, varies like ζ 3/2: the fluid flow u‖ (3.3) is O(ζ ) in the
condensed layer and advects the O(ζ 1/2) excess ion concentration, giving Duec ∼ ζ 3/2.
Formally, from (4.1), and using I+ − I− ∼ l2c /ν at large ζ (cf. (3.10)), we have

Duem ∼ 1

2κR

∫ lc

0

2

ν
− 2 dy =

1 − ν

κRν1/2
ζ 1/2,

Duec ∼ m

8κR

∫ lc

0

2

ν
(I+ − I−) dy =

m

4κRν1/2
ζ 3/2.

⎫⎪⎪⎬
⎪⎪⎭

(4.3)

Note, no maximum in the mobility appears in figure 2 for ν = 0.1 and larger; does a
maximum exist for ζ > 10? To answer this interesting, if perhaps academic, question
we plot Me up to ζ =2500 (figure 4a) – a mobility maximum is indeed observed. More
surprising, however, is the mobility minimum at even larger ζ (for ν �= 0), after which
the mobility increases with ζ . In contrast, for ν = 0, Me decreases upon attaining its
maximum, until a value of ln 4 is reached as ζ → ∞ (O’Brien 1983). The increase in
Me at very large ζ is readily explained: the bulk counter-ion electrochemical potential
δμ− (3.6) is that of a conductor (C− = 1), to ensure maximal transport of counter-ions
into or out of the double layer. Conversely, co-ions are excluded from the double
layer; δμ+ adopts the profile of an insulator, C+ = 1/2. Thus, from (3.7)

Me → −1

2

∫ ∞

0

y(n0
+ − 1) dy as ζ → ∞, (4.4)

that is, Me is proportional to the integrated co-ion deficit across the double layer. For
ν = 0, (4.4) yields Me → ln 4. For non-zero ν, (4.4) is approximated by noting that the
dominant contribution comes from the condensed layer (lc ∼

√
νζ ) in which n+ = 0.

Thus, from (4.4) Me → νζ/4, giving a mobility that grows linearly with ζ and ν. The
data in figure 4(a) at large ζ ( > 1000) do not quite conform to this linear scaling,
owing to a weak ζ -dependence of C+ that is not accounted for in the above argument.

Since Me is expected to depend primarily on surface conduction, we plot Me scaled
by ζ versus Du in figure 4(b). Data at different ν collapse onto a single master curve,
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at least up to Du ≈ 100 (see inset), after which the no-sterics (ν = 0) data set is slightly
above the rest. This is simply due to the difference in the scaling of Du for ν = 0 at
large ζ (exponential with ζ ) versus ν �= 0 (algebraic). In a recent paper (Khair &
Squires 2009), we considered the influence of hydrodynamic slip at the surface of a
particle on its electrophoretic mobility (in the absence of ion sterics ν = 0). Again, by
plotting Me scaled by its HS-like limiting form versus Du (which was modified to
account for slip), data for different slip lengths were collapsed onto a master curve.
That both the effects of hydrodynamic slip and ion sterics can be scaled out in this
manner is striking and highlights that it is surface conduction – encapsulated in
the Dukhin number Du – rather than the surface (zeta) potential ζ that primarily
determines Me beyond the HS approximation.

5. Concluding remarks
For over a century, the PNP equations have served as the de facto theoretical model

of electrokinetic phenomena. However, the non-interacting, point-sized ions assumed
by PNP can lead to impossibly large ion concentrations near even moderately charged
surfaces. Here, we have computed the electrophoretic mobility Me of a colloidal
particle, using modified PNP equations that account finite-sized ion steric effects
through Bikerman’s model. Ion steric effects lead to a saturation of the counter-ion
density near a highly charged surface, which diminishes surface conduction and thus
has significant consequences for the mobility. Indeed, the behaviour of Me can be
altered to the extent that the maximum in Me predicted by O’Brien & White (1978)
and O’Brien (1983) may not occur at physically reasonable zeta potentials. Further,
ion sterics bring Me closer to the HS result, precisely because the reduction in surface
conduction delays the onset of the large-Du regime, and HS is valid for any mean-field
model of the double layer at small Du .

It is worth asking whether the effect of ion sterics upon electrophoresis could
be observed experimentally? This requires both ζ > kBT /e and a sufficiently large
bulk volume fraction (cf. figure 2). First, ζ ∼ 2 − 4kBT /e are often encountered in
colloidal systems (Russel et al. 1989). Second, in a simple electrolyte to achieve,
for example, ν = 0.1 requires a bulk concentration n∞ ≈ 0.67 M, assuming an ion
size of a =0.5 nm (including a hydration shell). At this concentration, however, the
Debye length κ−1 ≈ 0.4 nm, which is smaller than the Bjerrum length and thus can
be expected to invalidate the mean-field approximation of electrostatic interactions.
Therefore, while ion steric effects may affect electrophoresis under such conditions, it
is unlikely that their consequences could be examined in the absence of additional
effects; more highly charged particles would be required. Larger volume fractions
(approaching unity, perhaps) may be possible in ionic liquids, which are effectively
solvent-free (Kornyshev 2007); electrophoresis may well be affected significantly in
such systems. In aqueous electrolytes, ion sterics may be more readily encountered in
induced-charge electrokinetics (Squires & Bazant 2004) or AC electrokinetics (Ramos
et al. 1999; Storey et al. 2008), wherein electric fields are applied around polarizable
particles and electrodes. In these systems, the strength of the applied field sets the
zeta potential, and ζ � kBT /e are routinely encountered, necessitating a much lower
bulk concentration for ion sterics to potentially matter (Kilic et al. 2007a).

The impossibly large counter-ion densities predicted by the PB equation at large zeta
potentials ζ are usually circumvented by introducing a Stern layer between the particle
surface and the plane of shear (i.e. the location at which ζ is defined and beyond
which fluid flows). Physically, the Stern layer accounts for steric repulsion between a
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diffuse counter-ion and the surface; the thickness of the Stern layer corresponds to
the distance of closest approach of the two. Hence, the Stern layer is devoid of ions
and acts as a linear capacitor in series with the diffuse layer. The zeta potential is
related to the potential at the particle surface φs via ζ = φs/(1 + CDiff /CStern), where
CDiff and CStern are the capacitances of the diffuse and Stern layers, respectively.
When CStern � CDiff , the surface potential is mostly dropped over the Stern layer, and
ζ � φs . In this case, ζ may not be sufficiently large for the PB equation to yield
aphysically large counter-ion densities. Conversely, if CStern � CDiff then ζ ≈ φs – only
a small portion of φs is dropped across the Stern layer. Importantly, our calculations
for ion steric effects on the electrophoretic mobility are robust, since inclusion of
a Stern layer would simply set a difference between φs and ζ ; if ζ surpasses the
critical potential φc a condensed layer of counter-ions will still form at the plane of
shear. A further refinement of the Stern picture accounts for counter-ion adsorption
at the particle surface (Lyklema 1995). While fluid cannot flow in the Stern layer,
the adsorbed counter-ions are mobile, allowing for conduction within the Stern layer.
Kijlstra, van Leeuwen & Lyklema (1992) performed a thin double-layer analysis of
the PNP equations accounting for Stern layer conduction, which showed the mobility
Me for a given ζ to decrease as the ratio of Stern layer-to-diffuse layer conductivities
increases; indeed, for a sufficiently large ratio a maximum in Me is not observed.
Qualitatively similar conclusions were reached by Mangelsdorf & White (1990), who
studied a more detailed model of counter-ion adsorption and Stern layer conductance.
Conduction within the Stern layer increases the Dukhin number Du for a given ζ ,
thereby lowering Me. Conversely, as we have shown, ion steric effects lower Du for
a given ζ , leading to an increase in Me. Thus, Bikerman’s model is fundamentally
distinct from the Stern layer: the former accounts for steric repulsion between ions;
and the latter for interactions between ions and the charged particle.

Our analysis was conducted in the thin-double-layer limit κR � 1. The bulk
governing equations and effective boundary conditions derived in § 3 can (and should)
be used to study ion steric effects on other classic electrokinetic phenomena, such
as the electroviscous effect, streaming currents/potentials, and the effective electrical
conductivity of dilute suspensions. However, the notion of a ‘thin’ double layer is
itself subtle, since at large enough ζ the condensed-layer thickness lc grows like ζ 1/2,
effectively increasing the width of the double layer. Indeed this is responsible for the
decay of the differential capacitance at large voltages (Freise 1952). Properly, the thin-
double-layer assumption is voltage dependent, requiring that lc + κ � R. Hence, there
is merit in solving numerically the full linearized MPNP equations, thereby allowing
a systematic study of the validity of thin-double-layer assumption in computing Me.

Recall, Bikerman’s model assumes that ions and solvent molecules have equal size
and occupy sites on a square lattice. The resulting ‘excess’ chemical potential of ion i

due to ion steric effects is μex,Bik
i /kBT = − ln(1 − ν) (cf. (2.4)). However, Bikerman’s

model underestimates ion steric effects, since it neglects the volume excluded to other
ions as a result of the volume occupied by a single ion; for example, a spherical ion
excludes eight times its own volume (Biesheuvel & van Soestbergen 2007; Bazant
et al. 2009). Accounting for excluded-volume effects requires adjusting μex,Bik

i to read
μex

i /kBT = − ln(1 − 8ν) (Biesheuvel & van Soestbergen 2007). In fact, this expression
is the low-volume-fraction limit of the Carnahan–Starling (CS) equation-of-state
for monodisperse hard spheres μex,CS

i /kBT = ν(8 − 9ν + 3ν2)/(1 − ν)3 (Carnahan &
Starling 1969). A modified PB equation based on the CS equation of state (the CS
MPB equation) was solved by Bazant et al. (2009) for the double-layer structure over
a flat electrode. While we focused on Bikerman’s model, our analysis in § 3 applies to
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other equations of state, and simply requires the appropriate equilibrium ion density
profiles n0

±.
Our thin-double-layer analysis can be extended to multi-component systems

containing ions of different size and valency. Indeed, ion steric effects can lead
to a qualitatively different double-layer structure in such systems. For example, the
GC model predicts the counter-ion with the highest valency to be overwhelmingly
present in the double layer at large ζ . By contrast, Shapovalov & Brezesinski (2006)
measured the double-layer structure adjacent to a negatively charged Langmuir
monolayer in an aqueous solution containing ions of different size and charge. They
noted significant departures from the GC model, including ‘counter-ion segregation’,
wherein smaller ions with lower valence were present in greater number in the double
layer than larger ions with higher valence. Their experiments were theoretically
modelled by Biesheuvel & van Soestbergen (2007), via a modified PB equation based
on the ‘Boublik–Mansoori–Carnahan–Starling–Leland’ equation of state for mixtures
of unequal hard spheres. The implications of counter-ion segregation and electrolyte
asymmetry on electrophoresis are worth investigation, and have garnered attention in
induced-charge electrophoresis of charged polarizable particles (Bazant et al. 2009).

We have assumed that the viscosity η and permittivity ε of the electrolyte remain
uniform. These assumptions are questionable, especially for a highly charged particle,
where one expects that η increases and ε decreases within the double layer, due to
the large concentration of ions present. For the same reason, the ion diffusivity D

is also anticipated to decrease in the double layer. Bazant et al. (2009) proposed a
simple model for ‘charge-induced thickening’, where η increases with charge density
ρ, and diverges in the condensed-layer limit ρ = ze/a3. Physically, this has the
effect of moving the plane-of-shear from the particle surface to the edge of the
condensed layer, reducing the electro-osmotic flow within the double layer and
thus the electrophoretic mobility. Hence, the condensed layer begins to resemble
a Stern-type layer, over which a potential can drop but through which fluid cannot
flow.

Of the various techniques that have been developed to account for ion steric
effects in electrical double layers, Bikerman’s model is perhaps the most simple and
straightforward. Our treatment using Bikerman’s model was thus able to derive the
dramatic effects – both quantitative and qualitative – that ion sterics can have on the
electrophoretic mobility of a colloidal particle, without sacrificing physical intuition
and clarity. As discussed above, there are several physical effects not included in
Bikerman’s model whose implications for electrophoresis may be as dramatic and
hence warrant further investigation. Despite its shortcomings, however, Bikerman’s
model seems a useful starting point to treat ion steric effects in this and other
electrokinetic phenomena.

We gratefully acknowledge the support of the U.S. Army Research Office through
the Institute for Collaborative Biotechnologies (ASK) and NSF CAREER support
under CBET-0645097 (TMS).
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